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and type of anomalously scattering atoms and can 
readily incorporate information from isomorphous 
replacement. If a heavy-atom structure is not known, 
it is still possible to evaluate triplet phase invarants 
(Karle, 1984e) from the exact algebraic analysis. 

The algebraic analysis presented here involves 
somewhat different quantities. In its range of applica- 
bility, individual phase information would also be 
derivable from the present analysis if the heavy-atom 
structure were known since, then, ~P~.h in (24) and 
(25) would be known. The two kinds of algebraic 
analyses are expected to yield closely equivalent 
results in their areas of common applicability. 

In order to apply the results of this paper, which 
concern one predominant type of anomalous scat- 
terer, it is only necessary to know the chemical identity 
of this type of anomalous scatterer. 

I wish to thank Mr Stephen Brenner for writing 
the appropriate programs and making the computa- 
tions reported here. 

This work was suppoi'ted in part by USPHS grant 
GM30902. 
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Abstract 

Hypothetical variances are checked and improved 
and observations are tested for normal and indepen- 
dent distribution by means of g 2 distributions. For 
the conversion of o -2 into 0 .2 and of I into F the 
quantity X ( I ) = s i g n ( I ) [ I I  ~/2 instead of F = p I  ~/2 
(p = Lorentz correction etc.) is considered. With the 
probability density function f ( I )  for I the variance 
of F is 

0.~ p2 I X2( I ) f ( I )  d I -  I X ( I ) f ( I )  dI  . 
- - 0 0  - - 0 0  

This formula is also valid if the observed intensity is 
zero or negative. Unexpectedly, the approximate 
0.'F=p0.x/(2I t/2) are in most cases smaller than the 
correct ones. The simple formula F = p I  1/2 yields F 
that in the mean are too low. The correction formula 
valid for all ratios I /0 . ,  is Fco r r  = p ( 2 I  I / 2 - A ) ,  where 
I is the observed intensity and A the second integral 
in the above formula for 0.2. Since the expressions 
0 .2 and F¢orr are known, there is no other reason to 
discard weak intensities than the fact that this saves 
computing time. Examples are given and the normal 
probability plot is applied. 

0108-7673/85/020189-07501.50 

Introduction 

Hypothetical variances 0.2 of integrated intensities I 
of the rotating-crystal method can be Obtained by 
means of Poisson's formula: 

I = I T -  a ( B L +  B H )  (1) 

o .2 = I T  + o¢2(BL + BH) .  (2) 

I T  is the sum of all X-ray quanta recorded by the 
counter during the rotation of the crystal through the 
reflecting orientation. BL and B H  are the low- and 
high-angle background counts and a is the ratio of 
the times that were spent for the measurements of I T  
and of ( B L +  BH) .  It is not essential that I and 0.2 
are obtained by as simple formulae as (1) and (2); 
the arguments given in the following apply also if 
more sophisticated measuring procedures and for- 
mulae for the determination of I and 0.2 are used 
as, for example, proposed by Shoemaker (1968), 
Blessing, Coppens & Becker (1974) or Lehmann 
(1975). 

The necessity and procedures to correct pure 
Poisson variances have been discussed by many 
authors, e.g. Jeffery (1964), Jeffery & Rose (1964), 
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190 INTENSITIES,  STRUCTURE FACTORS A N D  THEIR  VARIANCES 

Abrahams (1964), Schulz ( 1971 ),* Abrahams (1974), 
McCandlish, Stout & Andrews (1975), Gonschorek 
(1981). Dunitz (1979) is not convinced of the effec- 
tiveness of any of the proposed error estimates. 
Apparently he would accept repeated measurements 
as a mean 'to get some reasonable statistical estimates 
of the errors' but does not think this to be feasible in 
practice. Indeed, a statistical estimate of the variance 
o -2 is the sample variance s 2 and this is obtained from 
repeated measurements. A practicable way of check- 
ing and modifying hypothetical variances by repeated 
measurements was proposed by Gonschorek (1982a) 
and examples are given by Alte da Veiga, Andrade 
& Gonschorek (1982), Gonschorek (1982b) and 
Gonschorek & Feld (1982). The data are also checked, 
whether they are normally and independently dis- 
tributed or not. In the present paper, first an improve- 
ment of this procedure is described and in another 
section the formulae for the derivation of F and O'F 
from I and o"i are given. 

Checking for normal and independent distribution and 
improving hypothetical variances 

As measures of how well symmetry-equivalent 
intensities and intensities measured with different 
crystals agree with each other, the internal (Ri, wRy) 
and mutual (R;/, wR~j) consistencies, respectively, 
have been used by Abrahams, Hamilton & Mathieson 
(1970). 

The disadvantage of these quantities is that they 
do not give information about the statistical 
behaviour of the data such as variances or systematic 
errors. Further, the numerical values of Ri and Rij, 
as those of the R factor in least-squares refinements, 
depend upon whether the data set consists primarily 
of strong intensities or if there are many weak reflec- 
tions. 

These disadvantages can be avoided if the follow- 
ing relationships are taken into account. Consider a 
sample of nj observations xji, i = 1 , . . . ,  nj, with the 

2 The population mean xt and the variances o-j~. 
weighted mean 

and the quantity 

with weights 

n 1 

xt = Z w,x,, 
i 

'5 
2= (n t 1)-'  st - Y~ w,(xt, ~t) 

i 

are taken. The variance of xt is derived from (3): , (o )1 
2 2 2 . (6) 0" ~1 -~- E W i O ' j  i = O'j i  2 

i 

If the observations xt~ are normally and independently 
distributed, the quantity 

2 (n t 1)s2/ 2 (7) Xt = -- o-~, 

is X 2 distributed with v = (n t - 1) degrees of freedom, 
cf Gonschorek (1982a).* Instead of X 2, the quantity 

2 2 2 a t = x ~ / ( n t  1) (8) - -  : S j  / O-f¢~ 

is considered. It has the population mean unity and 
the variance 2 / (n  t - 1 ), cf  van der Waerden ( 1971 ), 
p. 94. If there are j  = 1 , . . . ,  n observables, for example 
intensities of different hkl, the weighted mean of all 

2 
At 

O A2 , 2  = = wja t (9) 
J 

with weights 

w ; = ( n t - 1 ) / ~ ( n k - 1 )  (10) 

has the population mean unity and the variance 

/# o-~=2 ( n t - 1 ) .  (11) 

Also, the empirical variances s~ of Q can be 
evaluated: 

s~ (n 1 ) - ' ~  ' 2 = - w j ( h j - Q )  2. (12) 
J 

The quantity Q, (9), taking (10), (8), (4), (5) and (6) 
into account can be rewritten: 

Q = i ~ .  o~2(x j , -~ j )  2 ( n j -  1). (13) 
j i 

Suppose now, out of a set of integrated intensities of 
a crystal, n = 1000 intensities have been measured 
twice, i.e. nj = 2  for thousand j or thousand hkl! 

(3) Hypothetical variances o-~i can be derived, assuming 
the intensities to be Poisson distributed, so that Q 
can be evaluated. If Q differs from unity by more 
than some fraction of its standard deviation o" o, (11 ), 

(4) one may decide to modify the variances o)]. A simple 
modification as proposed by Gonschorek (1982a) is 
the multiplication by a constant factor v: 

w, = o-;; 2 o-~2 (5) 

* Schulz (1971) in his expression for the variance of the corrected 
intensity took into account a term representing the uncertainty of 
the scaling parameter deduced from control or standard reflections. 

o-j2 = vo-j]. (14) 

The factor v was determined by fitting the observed 
to the theoretical X 2 distribution and this has the 

* On request, an English translation of this paper can be obtained 
from the author. 
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disadvantage that the numbers nj of repeated 
measurements must be the same for all n reflections 
hkl. Now, from (13) it is seen that v = Q makes the 
new Q equal to unity and the numbers nj need not 
be the same. Another modification of hypothetical 
variances uses the so called instability constant p, 
which was discussed in detail by McCandlish, Stout 
& Andrews (1975). This modification is equivalent to 

0.'i2 = 0.~.i + p.f. 2. (15) 

Again, the factor p can be determined via (13) in a 
few steps regarding Q as a function ofp  and demand- 
ing Q = 1. 

As soon as the variances are modified in (13), so 
that Q = 1 is valid, the quantity Q loses its capability 
to give information about the normal and indepen- 
dent distribution of the data. Therefore, instead of Q 
the ratio 

r = s2o/0"20 (16) 

with s~ from (12) and 0.~ from (11) may be used for 
this purpose. The closer r comes to unity, the surer 
the data can be assumed to be normally and indepen- 
dently distributed. 

Systemat ic  errors 

Systematic errors, since they are not random, cannot 
be treated statistically but they may be revealed by 
statistical methods. Abrahams (1969) gives a list of 
error sources separated as random and systematic 
errors and earlier Abrahams (1964) divides systematic 
errors into anisotropic and isotropic classes. 
Anisotropic systematic errors are detectable by com- 
parison of symmetry-equivalent intensities, certain 
kinds of isotropic ones are detectable by comparison 
of data, which were measured under different condi- 
tions, e.g. different crystals, different scan ranges, 
monochromatized or/3-filtered radiation. 

To reveal systematic errors, data that are supposed 
to have the same mean are checked by the same 
criteria as repeatedly measured data; but now the 
variances must not be changed! The quantities Q and 
r, defined by (13) and (16), are both expected to come 
close to unity. 

If their actual numerical values indicate systematic 
errors not to be negligible, one may apply a X 2 test 
as described by Gonschorek (1982a) and reject those 
(equivalent data) whose X 2 value is larger than is 
acceptable from a statistical point of view. Before the 
comparison, data measured under different condi- 
tions must be brought onto the same scale. This can 
be achieved by a procedure described by Hamilton, 
Rollett & Sparks (1965) and modified by Gonschorek 
(1982b). 

If a set of data could successfully pass the described 
statistical examination, the goodness-of-fit parameter 

in a least-squares refinement should not be different 
from unity. If it is, then most probably (i) there are 
undetected systematic errors, or (ii) the model is 
wrong. Examples both for (i) and (ii) are given by 
Rollet (1984). 

As an alternative mean, to check for systematic 
errors in structural crystallography, the Durbin-  
Watson d statistic has been proposed by Flack, 
Vincent & Vincent (1980), e f  also Flack (1984). 

Converting I into F and ¢r 2 into ¢r 2 

It is now assumed that the integrated intensities I are 
normally and independently distributed with vari- 
ances 0 .2 and that  there are no systematic errors. If I 
is normally distributed, then IFI = p I  1/2 is not nor- 
mally distributed and in a least-squares refinement 
based on I FI the expectation value of the goodness-of- 
fit parameter is in principle unknown. One may there- 
fore prefer to refine on I and knowledge of o .2 is not 
necessary. Refinement on I is compared with that on 
IFI and F by Wilson (1976) and under certain condi- 
tions it may be desirable to refine on IF[. Further, for 
the estimation of errors in electron or deformation 
densities as discussed by Rees (1976, 1978), the struc- 
ture factor variances must be known. In the following 
again F instead of I FI is written. For the derivation 
of the variance o -2, instead of F the quantity X ( I )  = 
sign (I)1II l/2 is considered. The variance of X ( I )  is 

I x2(I ) f ( I )  d I -  I X(I)f(I)  d1 (17) 
- - 0 0  - - 0 0  

^ 2 with f ( I )  = (0.~2~) - ' /2 exp [ - ( 1 -  I)2/20.i],  so that 

0.2 = p20.2 (18) 

is found. Here I is the population mean, whereas [ 
is the sample mean. A similar equation to (17) was 
used by Rees (1976), equation (4). But Rees integrates 
from zero to infinity and does not consider negative 
values o f / ,  although I can become negative. Suppose 
a reflection is systematically absent [I  = 0  in f ( I ) ]  
and one wants to check by repeated measurements 
of I if this is the case or not; then I from (1) scatters 
about zero and the mean /, (3), can be negative. 
In this case it is reasonable to put I = 0  with the 
variance 0.2 as defined in (6). Compare, however, 
Hirshfeld & Rabinowich (1973) and French & Wilson 
(1978). 

The conversion of I into F was discussed by Ibers 
& Hamilton (1964), Rees (1977b) and Wilson (1979). 
The formula given by Wilson fails just in those cases 
where a correction of the simple equation (19) seems 
to be necessary, namely for small I /0 .v  The amounts 
by which the values of F are in the mean too low, if 
(19) is applied, were given by Rees (I977b). But his 
error estimates are too low compared with those 
obtained, if negative values of I are also taken into 
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account as is seen by comparison of curve (b) in Fig. 
2 with Fig. 4 of Rees (1977b). 

For the evaluation of F = pill2 the square root of 
the mean rather than the mean of the square roots of 
equivalent intensities should be taken. Even then, the 
observed F is too low, cf. equation (27) of Wilson 
(1979). 

The 'true' F = p~l 1/2 is unknown. From experiment 

F =pI  1/2 (19) 

is found; its expectation value is 

~=pA, (20) 

where A is the second integral in (17). Hence, the 
expectation value of F' = p[II/2+ ( ~ / 2 _  A)] is p~/2, 
the 'true' E Replacing I by I in this equation leads 
to the correction formula 

F¢orr=p(2I~/E-A). (21) 

In the next section it is seen that the approximate 
structure factor variance 

tr'F2= pEtr2/4I (22) 

deviates from the correct one, (18), only for small 
I/o'x as does F, (19), compared with Fco~r, (21). One 
may therefore decide to discard all reflections with 
intensities less than some limit (e.g. I < 3o'x) and to 
use (19) and (22). In this case, the mean of equivalent 
intensities must be checked if it is larger than the 
rejection threshold. If, otherwise, equivalent 
intensities are checked individually, some weaker 
ones may be discarded and the stronger retained so 
that the mean of the remaining intensities is too large; 
an example is given by Alte da Veiga, Andrade & 
Gonschorek (1982). Knowing (18) and (21), there is 
no other reason to discard weak intensities than the 
fact that this saves computing time. Note that (18) is 
valid also for I = 0, when (22) cannot be applied. In 

2.0 

1.5 

1.0 

0.5 

0 1 2 3 4 5 //~, 

Fig. 1. The ratios 0"F/0"1/2: (a) for correct 0"F derived via (17) and 
(18); (b) for approximate 0"~, (22). In curve (c) the ratio 
(0"F/0"~) 2 is plotted. 

some cases, weak intensities must not be discarded, 
e.g. if a superlattice with many weak intensities is 
studied or if the errors of a difference density are 
estimated according to Rees (1976, 1977a, 1978). 
Since the variances of weak intensities are missing, 
the estimated errors are too low. 

Numerical examples and discussion 

For the numerical evaluation of the integrals in (17) 
the Gaussian quadrature formula with 26 grid points 
on either side of I was used. The integrations were 
extended to I+6o' i .  The results are represented in 
Figs. 1 and 2. Curve (b) in Fig. 1 is identical with 
curve (b) in Fig. 1 of Rees (1976, 1977a). The (a) 
curves correspond to each other but they are different, 
since Rees does not consider negative values of I. 
Curve (c) in Fig. 1 shows that weights w --- tr~ -2 using 
approximate variances, (22), are too large for I >  
0.3 o'i with a maximum error of a factor two for I = o'i 
and of 18 and 1% for 1=3o"i and 10o'i, respectively. 
The variances try, if they are used for the error 
estimation of a Fourier transform, are too low by the 
same factor. Curve (a) in Fig. 2 shows that the 
maximum correction of F amounts to 0.34o¥ and 
occurs at 1/o"i =0.45,  curve (b) is given for com- 
parison with the corresponding curve in Fig. 4 of 
Rees ( 1977 b). 

The result of the statistical treatment of three data 
sets is summarized in Table 1.* Two VO2 crystals 
were used, one with dimensions 35 x47 x 170 lxm for 
measurements at 363 K in the tetragonal phase and 
one with dimensions 17 x30 x 144 Ixm for measure- 
ments at 293 K in the monoclinic phase. The two data 
sets VO2 mon. I and VO2 mon. II were both measured 
with the second crystal in almost the same orientation 
and with the same CAD-4 diffractometer. The time 
interval between the two measurements was 15 
months. The Ag Ka radiation was monochromatized 
by a 50 ~m Rh/3 filter for the first data set and by a 

* For one more data set with 1472 twice measured intensities 
the factor v= 1.94 and the values Q= 159, 0"0=0.04, so= 137, 
R~=0:02 and wRi=0.09 were found for the 1472 pairs of 
intensities. This complete data set is discarded. 

0.1 

0-2 

0'3 

0 1 2 3 4 5 //~, 

Fig. 2. The influence of the correction (21) on F: (a) (F -  
Fcorr)/0.z, cf. (19) and (21); (b) -'obs"l/2-- Xobs,- with Xob~ = 1/0" I. 
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Table 1. Statistics o f  three data sets o f  integrated intensities 

Scan  wid ths  AO = D t an  0 +  E. F o r  s y m m e t r y - e q u i v a l e n t  intensi t ies  nj is b e t w e e n  2 a n d  16 (tetrag.)  and  2 a n d  4 (mon . ) .  

R, = Z ~, lib,-- [hi/ Z Ell",I, wR, Z -2 -= 2 
h e  h e  

R = E I F - I  f¢a~l I/Z F, wR = [ Z d'~2( F -  If~d)2/Z °'F2F23 ~/2, 

S 2 = (n - r) -~ Z cr~2(F-If~a~d) 2. F stands for Fobs. 
T h e  n u m b e r s  n ( l  <-0), n ( t r F / ~ ' F > l ' l )  and  n ( A F / t r F >  0.2) give the  n u m b e r s  o f  u n i q u e  intensi t ies  fo r  w h i c h  the  re la t ion  g iven  in 
b racke t s  is va l id  [AF = Fco r r -F~  cy (21) and  (19)]. T h e  n u m b e r  n ( ! -  0) does  no t  i nc lude  sys temat ica l ly  absen t  reflect ions.  

Crys ta l  
a n d  scan  
p a r a m e t e r s  

v o 2  tetrag. 
D = 0.9 °, E = 0-33 ° 
sin 0 /h  < I . 0 A  -I  

VO2 mon. I 
D = 0 . 1  ° , E = 1 - 5  ° 
sin 0 /h  <0.75 A - t  

C o n t r o l  ref lect ions  In t ens i ty  statist ics* R e f i n e m e n t  

sin 0 / h  I v 

0.16/~-i  1241 13.42 
0.47 295 4.26 
0.70 103 1.08 
Number of  repetitions: 34 

0.30/~-l  534 1.25 
0.38 261 1.10 
0-43 29 1.48 
Number of  repetitions: 156 

0.31 524 1.43 
0.31 107 0.87 
0.45 44 1.00 
Number of  repetitions: 104 

VO2 mon. II 
D = 0 . 1  ° , E = 1 . 5  ° 
sin 0/A < 0 . 9 A  - l  

n p v Q trQ 

128 0 1.52 0.96 0.13 
136 0 1.52 3.81 0.04 
106 0 1.52 0.98 0.05 
n(l<-O) = 0  n(o'F/ortF> 1"1)= 1 

1031 6X 10 -4 i '02 0"99 0"04 
341 6 X 10 -4 1"02 1"14 0"05 
322 6X10 -4 1"02 0"96 0.05 

n(I--<0) = 0 n(trF/~'F> 1.1)= 17 

1067 0 1.00 0.97 0.04 
657 0 1.00 1.13 0.03 
636 0 1"00 0"98 0"03 

n(l<-O) =45 n(trp/tr~> 1.1) =94  

sQ R i wR i n R wR S 2 tysX 

0.13 0.03 0.04 
1.53 0-04 0.05 
0.06 0.03 0.03 72 0.029 0.015 2.24 0-18 
n(AF/tr F > 0.2) = 0 

0.04 0.03 0.04 
0.06 0.03 0.03 
0.05 0.03 0.04 322 0.024 0.016 1.93 0.09 

n(AF/trF > 0.2) = 7 

0.04 0-04 0.05 
0.05 0.06 0"06 
0-03 0"06 0.06 636 0-062 0.018 1.43 0-06 

n(AF/~rF > 0.2) = 72 

* First line: repeatedly measured intensities, nj = 2; second line: symmetry-equivalent intensities before X 2 test; third line: symmetry-equivalent intensities 
after X 2 test. 

graphite monochromator  for the other two data sets. 
Three control reflections were measured for all data 
sets and the factors v given in the second block of 
Table 1 are the ratios 2 2 sj/cr~j, cf. (4) and (6). In the 
third block, p denotes the instability constant, (15). 
The factors v, (14), given in this block were obtained 
by fitting the observed to the theoretical X 2 distribu- 
tion for twice (nj = 2) measured intensities. 

The quantities Ri and wR~ are as used by Abrahams, 
Hamilton & Mathieson (1970). Here, the symbol e 
means either repeatedly measured or symmetry 
equivalent. The values of agreement, R and wR, are 
as defined by Hamilton & Abrahams (1970). The 
goodness-of-fit parameter S 2 has for large (n - r) the 
expectation value 1 and the standard deviation ors 2 = 
[2/(n - r)] 1/2, n is the number of observations and r 
the number of parameters. 

These quantities, expectation value and standard 
deviation, are unknown for R and wR so that S 2 is 
to be preferred against R and wR as a measure of 
agreement as was pointed out by Hahn (1960). 

The first two data sets of Table 1 do not contain 
those intensities for which I/o-~ < 1.7 was found in 
a short prescan. Taking these intensities into account 
increases drastically the values of Ri and R and 
decreases the e.s.d.'s of the refined parameters. The 
third data set comprises the intensities of all reflec- 
tions with sin 0 /h  as given in Table 1. The factor p 
was varied or put equal to zero depending upon 
whether sQ came closer to its expectation value or 
not. For I > 10tyt, (22) was used for the derivation of 
trF and (29) of Wilson (1979) for the derivation of 

F. The other intensities and their variances were trans- 
formed via (21) and (18). 

All three data sets exhibit numerical values of Q 
and s~ (for symmetry-equivalent data after the X 2 
test), which indicate the data to be normally and 
independently distributed and the variances to be 
properly chosen. Nevertheless, the goodness-of-fit 
parameters adopt values much larger than acceptable 
from a statistical point of view. 

For the tetragonal phase, several reasons can be 
given to explain this discrepancy: many intensities, 
mainly strong ones, were rejected by the X 2 test 
indicating strong extinction effects and errors caused 
by different absorption for different orientations of 
the crystal (/x = 37.7 cm -1 for both phases of VO2, 
none of the three data sets was corrected for absorp- 
tion). During the refinement, an additional 34 reflec- 
tions all with F > 9 . 0  were discarded. For most of 
them F was much less than ]Fcalcl (F  stands for Fobs,  

Fmax = 38), again showing the influence of extinction. 
With the data of the monoclinic phase multipole 

population parameters also were refined. Here the 
large value of S 2 to some extent may be caused by 
some few variances supposedly chosen too low com- 
pared with the corresponding sample variances. [For 

2 from (4) was taken as the the control reflections, sj 
variance of ~j, (3).'] One may therefore try some more 
modifications of tr]i, for example, by dividing all data 
in groups according to intensities or to sin 0 /h  and 
by determining p and /o r  v separately for each group. 
Another modification, similar to that proposed by 
Nielson (1977) i s  cr~=o'~,+bx~i+px~i+d(sin 0/A). 
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Table 2. Comparison of the two data sets for the monoclinic phase of VO2 

E.s.d.'s for  the least significant digits are given in parentheses.  

Numbe r  o f  
intensities k Q tro s o a 

359 1.573 (5) 1-14 0.075 0.135 0-20 (5) 
312 1.579 (5) 0.93 0.080 0.085 0. l0 (6) 

b 

1.03 (5) 
0.95 (6) 

Here again the constants b, p, d are to be derived 
from experimental data• However, no considerable 
improvement of the tr~ 2 against those variances that 
give the Q and sQ values of Table 1 can be expected, 
since these values are already close to their expecta- 
tion values. 

Apparently, it must be checked whether there are 
undetected systematic errors, or if the large goodness- 
of-fit parameter signals properties of the sample that 
are not reproduced by the model. For this purpose 
integrated intensities with different crystals of differ- 
ent sizes will be measured. This can reveal errors 
caused by absorption, extinction and multiple scatter- 
ing but not, for example, those of thermal diffuse 
scattering. For the two data sets of the monoclinic 
phase given in Table 1 the largest deviations ( F -  
Fcalc)/O'F confirm each other and the refined par- 
ameters agree within the e.s.d.'s, indicating the 
measurements to be reproducible. If the intensities 
rejected by the X 2 test are taken into account the 

monopole population parameter is changed drasti- 
cally and most of the multipole population param- 
eters are changed significantly• This result shows 
that the electron density derived with these data alone 
may allow chemical bonding in VO2 to be discussed 
with qualitative arguments; for a quantitative inter- 
pretation it seems to be unsuitable• 

The consistency of the two data sets of the mono- 
clinic phase was also checked by means of the quan- 
tities Q, trQ and sQ from (11)-(13) and independently 
by normal probability plots as proposed by Abrahams 
& Keve (1971) and as described in International 
Tables for X-ray Crystallography (1974). The results 
are summarized in Table 2 and in Figs. 3(a), (b). In 
the outer regions of the plots each value, in the middle 
regions each fifth and in the inner regions each tenth 
value is plotted• The scale factor k = k2 for the second 
data set was determined by minimizing s [(A2) of 
Gonschorek (1982b)] with respect to g2--k2-~; gl = 
k~ -~ was kept constant. The general condition s = min 
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Fig. 3. (a )  Norma l  probabi l i ty  plot  before  the ;(z test was appl ied  to the intensities o f  the two data  sets: no  intensities rejected.  (b) 
Normal  probabi l i ty  plot  af ter  the X 2 test was appl ied individually to both  data  sets: some intensities with the largest 9¢2 values rejected. 
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is, if there are only two data sets, identical with' the 
more special condition (2) given by Abrahams & Keve 
(1971); the sum over i in (A2) can be transformed 
into (Smh) 2. Note that minimization of s in (A2) by 
simply putting Os/Ogi = 0, i = 1 , . . . ,  n, often does not 
converge, cf. Sparks (1970). The arrays in Fig. 3 were 
approximated by straight lines t~mexpe r = a + bSmexpect 
and the values of a and b are given in Table 2 together 
with their e.s.d.'s. 

The values of Q, trQ and s o inTable 2 and the plot 
given in Fig. 3(a) for the data before the X 2 test show 
clearly one or both data sets to deviate from a normal 
distribution in accordance with the large Q values 
1.14 and 1.13 given in Table 1. The Q values 0.96 
and 0.98 for the two data sets after the X 2 test may 
indicate slightly overestimated variances leading to a 
slope of the normal probability plot less than unity, 
which is in accordance with the numbers in Table 2 
and with the plot in Fig. 3(b). 

This work was made possible by a grant from the 
Deutsche Forschungsgemeinschaft and by the sup- 
port of Professor Th. Hahn. The program for the 
least-squares refinement was written by E. Nowack 
and the drawings were prepared by R. Becker. The 
criticism of a referee of Acta Cryst. on the first version 
of this paper encouraged the author to develop the 
relations (9) to (13) and (21). 
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Abstract 

A general approach to the search for an optimal 
strategy of surveying reciprocal space is considered. 
It consists in determining a set of photographs that 
give the maximum number of structure factors in the 
minimum exposure time. Such a set of photographs 

0108-7673/85/020195-09501.50 

satisfies the required strategy if the following initial 
conditions are fulfilled: the given completeness of the 
data set, the resolution limit, the crystal setting and 
the technical conditions of the method used for the 
data-set collection. A general algorithm is applied to 
the screened precession and screenless rotation- 
oscillation methods used in protein crystallography. 
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